Centro de Território, Ambiente e Construção
Escola de Engenharia da Universidade do Minho
Campus de Azurém
4800-058 Guimarães, Portugal
Phone: + 351 253 510 200 (517 206)
Fax: + 351 253 510 217
Email: geral@ctac.uminho.pt
@JournalArticle {3147, title = {Performance assessment of micropollutants removal from water using advanced oxidation processes}, journal = {WSEAS Transactions on Environment and Development}, volume = {16}, year = {2020}, month = {2020-01-30 00:00:00}, pages = {57-66}, publisher = {World Scientific and Engineering Academy and Society (WSEAS)}, abstract = {In a global climate change scenario, reliable access to clean and safe water for all remains a great worldwide challenge for the twenty first century, as one of the most ambitious targets of several Sustainable Development Goals (SDG) established in the UN Agenda 2030. The increasing presence in the urban aquatic ecosystems of priority pollutants and contaminants of emerging concerning (CECs) have brought new challenges to the existing water treatment systems (WTS) concerning with public health protection and the of drinking water sources preservation. Advanced oxidation processes (AOPs) have been widely studied because of their potential as a complementary or alternative process to conventional wastewater treatment. Several AOPs using nanomaterials as photocatalyst can be particularly effective in the degradation of many toxic micropollutants, and enhance the multifunctionality, versatility and sustainability of WTS. This work presents a synthesis of the major results obtained in several pilot and lab-scale studies aiming to assess the performance of different low-cost catalytic processes used for antibiotic and pesticide removal. For each photo-oxidation reactors, different test scenarios are defined in order to evaluate the effects of several abiotic and hydraulic parameters on process kinetics and removal efficiencies. The experimental results were very promising, because antibiotic removal efficiencies achieved the maximum value of 96\% for the photo-oxidation by water columns with suspended TiO2 nanoparticles, and 98\% for the photocatalytic filtration performed by a porous medium coated with TiO2. In the photoelectrocatalytic reactor, the atrazine concentration has been fully removed for reaction times between 35 and 95 minutes.
}, keywords = {advanced oxidation, micropollutants, Photocatalysis, photoelectrocatalysis, TiO2., Water treatment}, issn = {1790-5079}, doi = {10.37394/232015.2020.16.7}, url = {http://hdl.handle.net/1822/64253}, author = {Duarte, A.A.L.S. and de Amorim, P. M. T.} }
The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.
Currently CTAC aggregates 25 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more
Centro de Território, Ambiente e Construção
Escola de Engenharia da Universidade do Minho
Campus de Azurém
4800-058 Guimarães, Portugal
Phone: + 351 253 510 200 (517 206)
Fax: + 351 253 510 217
Email: geral@ctac.uminho.pt