Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Ongoing Research Projects
      • Research Projects 2018-2022
      • Past Projects
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
      • RepositoriUM
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses
    @JournalArticle {3132,
    	title = {Characterization of innovative mortars with direct incorporation of phase change materials},
    	journal = {Journal of Energy Storage},
    	volume = {30},
    	year = {2020},
    	month = {2020-04-01 00:00:00},
    	abstract = {

    The utilization of innovative cement mortars with direct incorporation of non-encapsulated phase change materials (PCM) is a solution for minimize the high energetic consumption of buildings, due their ability in regulate the temperature inside the buildings. The development of construction material with PCM, based in macro and microencapsulation techniques has been developed. However, the utilization of these techniques has a high cost.
    The direct incorporation of non-encapsulated PCM allows the cost reduction, due to the absence of PCM encapsulation and complex incorporation techniques, representing an innovative and promising way to contribute significantly for the energy efficiency of buildings. Four different compositions were developed and characterized according to their physical, mechanical and thermal properties. The physical behaviour was evaluated based in some properties in the fresh and hardened state such as workability, density and water absorption. The mechanical performance was evaluated based in the flexural and compressive strengths. Finally, the developed mortars were thermally tested based in temperature laws representative of the north part of Portugal, with a resource to a climatic chamber and a data acquisition system. The obtained results showed a decrease in the water absorption due to the partial PCM occupation of the mortar pores. On the other hand, it was observed a slight decrease in the mechanical properties do to the presence of higher liquid binder ratio. Finally, regarding to the thermal tests it was verified a decrease in the extreme temperatures and cooling and heating needs. The mortar with 20\% of PCM presented the higher impact in the interior temperature regulation.

    }, keywords = {Direct incorporation, Energy Efficiency, mechanical behaviour, Phase change materials, Physical behaviour, Thermal behaviour}, doi = {10.1016/j.est.2020.101439}, author = {Cunha, S. and Leite, P. and Aguiar, J. B.} }

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 25 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits