Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Ongoing Research Projects
      • Research Projects 2018-2022
      • Past Projects
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
      • RepositoriUM
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses
    @JournalArticle {2825,
    	title = {Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings},
    	journal = {Renewable Energy},
    	year = {2018},
    	note = {

    R. Mateus, et al., Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings, Renewable Energy (2018), https://doi.org/10.1016/j.renene.2018.04.036

    }, month = {2018-04-12 00:00:00}, pages = {1-11}, publisher = {Elsevier}, edition = {2018}, abstract = {

    Nowadays, in the European Union (EU) the construction rate of new buildings is very low and therefore achieving the EU targets regarding the energy efficiency of the building sector is only possible through the reduction of the energy needs of the existing building stock. A building design based on passive measures is a priority to reduce operational energy consumption but it is not enough to achieve the nearly Zero Energy Building (nZEB) level. Consequently, the design must also consider active systems with high efficiency and the use of renewable energy sources to partially/totally replace the use of non-renewable energy. At this level, solar thermal and photovoltaic panels play an important role, mainly in countries with high levels of solar radiation, as in the Southern European countries. Nevertheless, there are still some barriers to overcome for the broader dissemination of the implementation of these systems. One of the most important is that building owners are not fully aware of the life cycle benefits that these systems have at environmental and economic levels. The best way to raise awareness to these benefits is through the analysis of case studies, highlighting the short or mid-term benefits resulting from the integration of these active solutions. Thus, this paper is aimed at analysing the environmental and life cycle costs of different energy renovation scenarios, assessing the contribution of the solar systems to achieve three levels of energy performance. The study is focused on the energy renovation of a detached single-family house considering the climatic conditions of Porto, Portugal. From the results, it is possible to conclude that, on an annual basis, and for the Portuguese climate, it is possible to overcome, many of the energy needs for acclimatization and preparation of domestic hot water with the integration of these systems. The study also shows attractive economic and carbon payback times resulting from their use..

    }, keywords = {Energy renovation strategies, LCA, NZEB, solar systems, ZEB}, issn = {0960-1481}, doi = {https://doi.org/10.1016/j.renene.2018.04.036}, url = {https://www.sciencedirect.com/science/article/pii/S0960148118304440?via\%3Dihub}, author = {Mateus, R. and Silva, S. M. and Almeida, Manuela G.} }

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 25 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits