Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Research projects
      • Research Projects 2013-2018
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses
    @conference {2367,
    	title = {Ultra-high Durable Concrete: A Way Towards Safe and Durable Structures},
    	journal = {7th International Conference on Safety and Durability of Structures ICOSADOS 2016},
    	year = {2016},
    	month = {2016-05-10 00:00:00},
    	address = {Vila Real, Portugal},
    	abstract = {

    Durability of construction and building materials is a pivotal issue for any civil engineering project in the context of sustainable development. In this regard, developing any material with improved durability characteristics would be of great significance particularly for infrastructures encountered aggressive environments. Ultra-high performance concrete (UHPC) is one of this promising materials, as a high-tech self-compacting composite material, which shows advanced characteristics such as self-compactness, compressive strength higher than 150 MPa, and exceptional durability performances compared to other kinds of concrete. This material offers variety of sustainable applications. It enables designers to have slim sections with higher strength, ductility and durability for applications such as shell structures, interior and exterior architectural and structural elements in any shape and texture even in high-rise structures and aggressive environments. In this paper, the durability of a specific composition of UHPC was studied. The dense matrix of the designed UHPC exhibited ultra-high durability performance through long-term and intense carbonation and chloride-ion migration tests. As results demonstrated, even after 191 days, no carbonation depth was observed. No chloride depth was also detected after 14 days of being in the chloride solution with maximum voltage of 60 V.

    }, keywords = {Carbonation, chloride, Composite Material, Durability, Eco-efficient, Fly ash, Sustainability, Ultra-high durable concrete}, author = {Ferdosian, I. and Cam{\~o}es, A.} }

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 24 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits