Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Research projects
      • Research Projects 2013-2018
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses
    @JournalArticle {1972,
    	title = {Comparison Between Two Hydrodynamic Models for Flooding Simulations at River Lima Basin},
    	journal = {Water Resources Management},
    	year = {2014},
    	month = {2014-11-13 00:00:00},
    	publisher = {Springer Netherlands},
    	abstract = {

    According to EU flood risks directive, flood hazard maps should include information on hydraulic characteristics of vulnerable locations, i.e. the inundated areas, water depths and velocities. These features can be assessed by the use of advanced hydraulic modelling tools which are presented in this paper based on a case study in the river Lima basin, Portugal. This river includes several flood-prone areas. Ponte Lima town is one of the places of higher flood risk. The upstream dams can lower the flood risks if part of its storage capacity is allocated for mitigating flood events. However, proper management of dam releases and the evaluation of downstream river flows should be considered for preventing flood damages. A hydrological and a one-dimensional hydrodynamic model were implemented, and at a particular flood-prone town, inundation was assessed using a two-dimensional model. The hydrological model is based on the well known Sacramento model. For this purpose, two different modelling implementations were analysed: a model based on a finite element mesh and a model based on rectangular grids. The computational performance of the two modelling implementations is evaluated. Historical flood events were used for model calibration serving as a basis for the establishment of different potential flood scenarios. Intense precipitation events in the river{\textquoteright}s basin and operational dam releases are determinant for the occurrence of floods at vulnerable downstream locations. The inundation model based on the unstructured mesh reveals to be more computationally efficient if high spatial resolution is required. A new combination of software tools for floods simulation is presented including an efficient alternative for simulation of 2-D inundation using a finite element mesh instead of a grid.

    }, keywords = {Hydrodynamic modelling, Hydroinformatics tools, River flood forecasting}, issn = {0920-4741}, doi = {10.1007/s11269-014-0878-6}, url = {http://link.springer.com/article/10.1007\%2Fs11269-014-0878-6}, author = {Pinho, J. L. S. and Ferreira, R. and Vieira, L. and Schwanenberg, D.} }

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 24 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits