Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Research projects
      • Research Projects 2013-2018
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses

    Spent equilibrium catalyst as internal curing agent in UHPFRC

    TitleSpent equilibrium catalyst as internal curing agent in UHPFRC
    Publication TypePapers in International Journals
    Year of Publication2019
    AuthorsMatos A. M., Nunes S., Costa C., and Aguiar, J. B.
    Abstract

    The main goal of the current paper is to optimize ultra-high performance cementitious material (UHPC) mixes incorporating the spent equilibrium catalyst (ECat) to mitigate autogenous shrinkage. Design of experiments approach was used to optimize mixtures targeting different engineering properties, namely, self-compactibility, low early-age shrinkage and cracking risk, improved durability and high mechanical performance. The statistical models established indicated that ECat exhibits a strong positive effect on the autogenous shrinkage mitigation of UHPC attributed to the water absorbed in the porous of ECat particles. The proposed optimal UHPC mixture represents the best compromise between low autogenous shrinkage – 32% of reduction – and high resistivity at 28 days without impairing self-compatibility and compressive strength. This optimal UHPC combined with 3% high-strength steel fibres (lf/df=65) proved to be comparable to other Ultra High-Performance Fibre Reinforced Composites (UHPFRC), in terms of mechanical behaviour, and more eco-friendly and cost-efficient than UHPCs reported in the literature.

    JournalCement and Concrete Composites
    Volume104
    Date Published2019-09-01
    DOI10.1016/j.cemconcomp.2019.103362
    KeywordsAutogenous shrinkage, Durability, Spent equilibrium catalyst (ECat), Statistical factorial design, Sustainability, Ultra-high performance fibre reinforced cementitious composites (UHPFRC)
    RightsembargoedAccess (2 Years)
    Peer reviewedyes
    Statuspublished
    • Google Scholar
    • BibTex
    • RTF
    • XML

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 24 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits