Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Ongoing Research Projects
      • Research Projects 2018-2022
      • Past Projects
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
      • RepositoriUM
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses

    A model for equivalent axle load factors

    TitleA model for equivalent axle load factors
    Publication TypePapers in International Journals
    Year of Publication2014
    AuthorsAmorim S. R., Pais, J., Vale A. C., and Minhoto M. J. C.
    Abstract

    Most design methods for road pavements require the design traffic, based on the transformation of the traffic spectrum, to be calculated into a number of equivalent passages of a standard axle using the equivalent axle load factors. Generally, these factors only consider the type of axle (single, tandem or tridem), but they do not consider the type of wheel on the axles, i.e., single or dual wheel. The type of wheel has an important influence on the calculation of the design traffic. The existing design methods assume that the equivalent axle load factors are valid for all pavement structures and do not consider the thickness and stiffness of the pavement layers. This paper presents the results of the development of a model for the calculation of the equivalent axle load factors considering the type of axle, the type of wheel and the constitution of the pavement. The model was developed based on the tensile strain at the bottom of the asphalt layer that is responsible for bottom-up cracking in asphalt pavement, which is the most widely considered distress mode for flexible road pavements. The work developed in this study also presents the influence of the type of wheel (single and dual) on pavement performance. The results of this work allowed the conclusion that the equivalent axle load factors for single wheels is approximately 10 times greater than for a dual wheel. This work also proposes average values for the equivalent axle load factors. An artificial neural network was developed to calculate the equivalent axle load factors.

    JournalInternational Journal of Pavement Engineering
    Date Published2014-10-13
    PublisherTaylor & Francis Ldt.
    ISSN1029-8436 (Print); 1477-268X (Online)
    KeywordsAxle Type, Equivalent Axle Load Factor, Equivalent Single Axle Load, Road pavements, Traffic, Wheel Type
    RightsembargoedAccess (2 Years)
    Peer reviewedyes
    Statuspublished
    • Google Scholar
    • BibTex
    • RTF
    • XML

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 25 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits