Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Ongoing Research Projects
      • Research Projects 2018-2022
      • Past Projects
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
      • RepositoriUM
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses

    An Introduction to the Hyperspace of Hargreaves-Samani Reference Evapotranspiration

    TitleAn Introduction to the Hyperspace of Hargreaves-Samani Reference Evapotranspiration
    Publication TypePapers in International Journals
    Year of Publication2018
    AuthorsHaie, N., Pereira R. M. S., and Yen H.
    Abstract

    Climate change has been shown to directly influence evapotranspiration, which is one of the crucial watershed processes. The common approach to its calculation is via mathematical equations, such as 1985 Hargreaves-Samani (HS85). It computes reference evapotranspiration (ETo) through three climatic variables and one constant: RA (extra-terrestrial radiation), TC (mean temperature), TR (temperature range) and KR (empirical coefficient). To make HS85 more accurate, one of its authors proposed an equation for KR as a function of TR in 2000 (HS00). Both models are 4D and their internal behaviours are difficult to understand, hence, the data driven applications prevalent among experts and managers. In this study, we introduce an innovative research by trying to respond to two questions. What are the relationships between TC and TR? What are the internal patterns of HS hyperspace (4D domain) and the changes in ETo possibilities of the two models? In the proposed approach, thresholds for the four variables are utilized to cover majority of the agroclimatic situations in the world and the hyperspace is discretized with more than 50,000 calculation nodes. The ETo results show that under various climatic conditions, the behaviour of HS is nonlinear (more for HS00) leading to an increased uncertainty particularly for data driven applications. TC and TR show patterns useful for regions with less data.

    JournalSustainability
    Volume10
    Edition4277
    Issue11
    Pagination1-18
    Date Published2018-11-19
    PublisherMDPI (Basel, Switzerland)
    DOI10.3390/su10114277
    URLhttp://www.mdpi.com/2071-1050/10/11/4277/pdf
    KeywordsEvapotranspiration, Feasible ETo possibilities, Hargreaves, HyperET, irrigation management, n-dimensional domain analysis, Sefficiency, Water resources management
    Citation

    Haie, N., Pereira, R.M., Yen, H. (2018) An Introduction to the Hyperspace of Hargreaves-Samani Reference Evapotranspiration. Sustainability, MDPI, 10(11), 4277, pp1-18. 

     

    RightsopenAccess
    Peer reviewedyes
    Statuspublished
    • Google Scholar
    • BibTex
    • RTF
    • XML

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 25 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits