Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Ongoing Research Projects
      • Research Projects 2018-2022
      • Past Projects
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
      • RepositoriUM
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses

    Flow Performance of Hybrid Cement based Mortars

    ProjectIF/00706/2014-UM.1.15
    TitleFlow Performance of Hybrid Cement based Mortars
    Publication TypeCommunications in International Conferences
    Year of Publication2017
    AuthorsAbdollahnejad Z., Kheradmand M., and Pacheco-Torgal, F.
    Abstract

    This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration. A mixture based on 80% fly ash, 10% calcium hydroxide and 10% waste glass showed the highest compressive strength. A compressive strength decrease was noticed concerning the use of the two admixtures that can due to the fact that those admixtures are not stable on high basic media. 

    Conference NameICBCM 2017: 19th International Conference on Civil Society and Building Materials
    JournalInternational Journal of Civil and Environmental Engineering
    Volume4
    Edition9
    Date Published2017-02-17
    PublisherWASET
    Conference LocationLondon
    URLhttps://www.waset.org/abstracts/65025
    Keywordsbiopolymer, flow, Fly ash, hybrid cement, polycarboxylate, waste glass, Waste reuse
    Citation

    Abdollahnejad, Z.; Kheradmand, M.; Pacheco-Torgal, F.. 2017. "Flow Performance of Hybrid Cement based Mortars",  In Proceedings of the 19th International Conference on Civil Society and Building Materials, London.

    RightsembargoedAccess (3 Years)
    Peer reviewedyes
    Statuspublished
    • Google Scholar
    • BibTex
    • RTF
    • XML

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 25 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits