Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Ongoing Research Projects
      • Research Projects 2018-2022
      • Past Projects
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
      • RepositoriUM
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses

    Estimation of the specific enthalpy–temperature functions for plastering mortars containing hybrid mixes of phase change materials

    TitleEstimation of the specific enthalpy–temperature functions for plastering mortars containing hybrid mixes of phase change materials
    Publication TypePapers in International Journals
    Year of Publication2014
    AuthorsKheradmand M., Aguiar, J. B., and Azenha M.
    Abstract

    The use of phase change materials (PCMs) for the building sector is increasingly attracting attention from researchers and practitioners. Several research studies forwarded the possibility of incorporating microencapsulated PCM in plastering mortars for building facades, in pursuit of increased energy efficiency associated with the heat storage capacity of PCM. However, most of these studies are centred in the use of a single type of PCM, which is bound to be more adequate for a given season of the year (e.g. winter or summer) than for all the seasons. The study proposed in this work regards the evaluation of the possibility of using more than one kind of PCM, with distinct melting ranges, here termed as hybrid PCMs, in plastering mortars, to achieve adequately advantageous performance in all seasons of the year. To characterize the PCM, the specific enthalpy and phase change temperature should be adequately measured. The main purpose of this study was to show the conceptual feasibility of combining PCMs in mortars and to evaluate the behaviour of the resulting mortars with differential scanning calorimeter. The results showed that the behaviour of the mortar that contains more than one type of PCM can be predicted through the superposition of effects of the independent PCMs and no interaction occurs between them. The knowledge obtained from the experimental testing established bases for a framework of numerical simulation of real-scale applications, which can be used to ascertain the feasibility of the hybrid PCM concept for decreases in energy consumption of heating/cooling demands in the buildings.

    JournalInternational Journal Energy Environmental Engineering
    Volume5
    Pagination1-7
    Date Published2014-03-26
    PublisherSpringer Berlin Heidelberg
    ISSN2008-9163
    DOI10.1007/s40095-014-0081-9
    URLhttp://hdl.handle.net/1822/30751
    KeywordsCalorimetry testing, Hybrid PCM, Microencapsulation, Mortar, Phase change materials (PCM)
    RightsembargoedAccess (2 Years)
    Peer reviewedyes
    Statuspublished
    • Google Scholar
    • BibTex
    • RTF
    • XML

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 25 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits