Home
Home
    • Home
    • About us
      • About CTAC
      • Organization
      • Regulation
    • People
      • Members
      • Positions available
    • Research
      • Vision
      • Research Areas
        • Construction Materials and Technologies
        • Hydraulics and Environment
        • Territory
      • Ongoing Research Projects
      • Research Projects 2018-2022
      • Past Projects
    • Facilities
      • Construction Materials and Technologies
      • Hydraulics and Environment
      • Territory
    • Publications
      • All
      • Books
      • Book Chapters
      • Papers in Scientific Journals
      • Conference Comunications
      • PhD Thesis
      • Masters Thesis
      • Journal
      • RepositoriUM
    • Education
      • Doctoral Programme Infrarisk
      • Doctoral Programme in Civil Engineering
      • Doctoral Programme in Eco Construction and Rehabilitation
      • Doctoral Programme of Solid Waste Management and Treatment
      • International Doctorate in Sustainable Built Environment
        • International Doctorate in Sustainable Built Environment
      • Master's Degree in Civil Engineering
      • Master's Degree in Sustainable Built Environment
      • Master's Degree in Urban Engineering
      • Master´s Degree in Sustainable Construction and Rehabilitation
    • Partners
    • Events
    • News
    • SITAC
    Filter

    Publications

    Papers in International JournalsChapters/ Papers in International BooksChapters/ Papers in National BooksCommunications in International ConferencesCommunications in National ConferencesMSc ThesesBooksProceedingsPatentsTechnical/ Scientific ReportsPhD Theses

    Classificação da rede viária em função da sinistralidade em ambiente SIG

    TitleClassificação da rede viária em função da sinistralidade em ambiente SIG
    Publication TypeCommunications in National Conferences
    Year of Publication2013
    AuthorsNogueira I. S., Ribeiro P. J. G., and Rodrigues D. S.
    Abstract

    Tendo em conta a atual conjuntura económica dos municípios, uma gestão financeira eficiente poderá ser mais facilmente alcançada se forem identificadas as prioridades de futuros investimentos. Neste contexto, a classificação da rede viária municipal em função da sinistralidade é fundamental na definição de prioridades de intervenção. O presente trabalho, apresenta um modelo de classificação de rede viária em função da sinistralidade integrada num sistema de informação geográfica. Definiu-se uma equação para obter um Índice de Sinistralidade Rodoviária, através da combinação dos seguintes indicadores: Indicador de Gravidade, Indicador de Danos Materiais e o Indicador dos Custos. A sua aplicação prática foi desenvolvida através de um caso de estudo no concelho de Barcelos. Da análise da natureza dos acidentes, constatou-se que as vias com maior número de colisões correspondem às vias com maior número de acidentes, todas integradas na rede de Estradas Nacionais e Regionais. Para além da classificação viária da rede, a aplicação do modelo permite analisar a cobertura espacial das ocorrências para determinar a centralidade e dispersão dos locais com maior incidência de acidentes rodoviários. Essa análise pode ainda ser refinada de acordo com a natureza dos acidentes, nomeadamente por colisão, despiste ou atropelamento.
    Given the current economical situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. An equation was defined to obtain a road safety index through the combination of the following indicators: Severity, Property Damage Only and Accident Costs. Its practical application was developed through a case study in the municipality of Barcelos. After analysing the nature of accidents, it was identified that roads with the largest number of collisions have also the largest number of accidents. All those cases belongs to the National and Regional road network. In addition to the road network classification, the application of the model allows to analyse the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, skidding and pedestrian roadkill.

    Conference NameXXVII ANPET, Congresso de pesquisa e ensino em transportes
    Pagination1-12
    Date Published2013-11-04
    PublisherANPET
    Conference LocationBelém do Pará, Brasil
    URLhttp://www.anpet.org.br/xxviianpet/
    KeywordsRede Viária, SIG, sinistralidade em ambiente SIG
    RightsopenAccess
    Peer reviewedyes
    Statuspublished
    • Google Scholar
    • BibTex
    • RTF
    • XML

    About CTAC

    The Centre for Territory, Environment and Construction (CTAC) is a research unit of the School of Engineering of University of Minho (UMinho), recognised by the “FCT – Fundação para a Ciência e Tecnologia” (Foundation for Science and Technology), associated to the Department of Civil Engineering (DEC), with whom it shares resources and namely human resources.

    Currently CTAC aggregates 25 researchers holding a PhD of which 20 are faculty professors of the Civil Engineering Department. Read more


    Watch the CTAC Institutional Video

    Journal

    Research Areas of Competence

    Construction Materials and Technologies
    Hydraulics and Environment
    Territory

    News

    Contact us

    Centro de Território, Ambiente e Construção
    Escola de Engenharia da Universidade do Minho
    Campus de Azurém
    4800-058 Guimarães, Portugal

    Phone: + 351 253 510 200 (517 206)
    Fax: + 351 253 510 217

    Email: geral@ctac.uminho.pt


    Copyright 2014 CTAC Research Group in Territory, Environment and Construction
    Website Credits